An obvious proof of Fishburn's interval order theorem
نویسندگان
چکیده
منابع مشابه
Another proof of Banaschewski's surjection theorem
We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...
متن کاملFirst-Order Proof Tactics in Higher-Order Logic Theorem Provers
In this paper we evaluate the effectiveness of first-order proof procedures when used as tactics for proving subgoals in a higher-order logic interactive theorem prover. We first motivate why such first-order proof tactics are useful, and then describe the core integrating technology: an ‘LCFstyle’ logical kernel for clausal first-order logic. This allows the choice of different logical mapping...
متن کاملA Machine-Checked Proof of the Odd Order Theorem
This paper reports on a six-year collaborative effort that culminated in a complete formalization of a proof of the Feit-Thompson Odd Order Theorem in the Coq proof assistant. The formalized proof is constructive, and relies on nothing but the axioms and rules of the foundational framework implemented by Coq. To support the formalization, we developed a comprehensive set of reusable libraries o...
متن کاملComplete Proof Systems for First Order Interval Temporal Logic
Di erent interval modal logics have been proposed for reasoning about the temporal behaviour of digital systems. Some of them are purely propositional and only enable the speci cation of qualitative time requirements. Others, such as ITL and the duration calculus, are rst order logics which support the expression of quantitative, real-time requirements. These two logics have in common the prese...
متن کاملAn Algebraic Proof of Deuber's Theorem
Deuber’s Theorem says that, given any m, p, c, r in N, there exist n, q, μ in N such that whenever an (n, q, c)-set is r-coloured, there is a monochrome (m, p, c)-set. This theorem has been used in conjunction with the algebraic structure of the StoneČech compactification βN of N to derive several strengthenings of itself. We present here an algebraic proof of the main results in βN and derive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1993
ISSN: 0012-365X
DOI: 10.1016/0012-365x(93)90065-2